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A wide variety of aromatic hydrocarbons can be ethylated at benzylic and aro- 

matic positions by treatment with ethylene and potassium in glyme/octaglyme 

at -25OC. 

In the course of continuing studies on the reductive cleavage of coal with the 

"blue solution" formed by alkali metals in polyethers 2) we were led to in- 

vestigate the behaviour under these conditions of a variety of potential model 
3) systems . In the cases of several aromatic hydrocarbons it was found that a 

complex mixture resulted, occasionally including significant amounts of sub- 

stances showing molecular weight increases of 28, corresponding to the addition 

of ethylene. We have since established that these products are the result of 

ethylene incorporation, whereby the ethylene results from decomposition of the 
4,5) solvent glymes . Such decomposition can be formally represented as an an- 

ionic ether cleavage process of the form: 

CH30CH2CH20R Ar -2 0-'cc;;l-CH ?R 
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L reduction products 

The assertion that free ethylene is involved is based on the observation in a 

wide variety of cases that the yield of "M + 28" products can be vastly in- 

creased by introducing gaseous ethylene directly into the "blue solution" 

reaction mixture. 

In general, it has been found that ethyl groups are introduced both at aromatic 

and benzylic positions. For example, with tetralin (I) as substrate, the typi- 

cal product distributions are as shown in scheme 1 6) . The reaction mixtures 

were analyzed by gas chromatography 7) and structures of the products assigned 

primarily on the basis of mass spectral (GC-MS) fragmentation patterns 8,9) . 

A comparable set of products results from the analogous treatment of toluene 

(II, scheme 2). In this case, structures were verified by direct GC comparison 

(g-propylbenzene, c- and m-ethyltoluene) and by a combination of mass spectro- 

metry 8) and I3 C-NMR analysis 10) of fractions purified by preparative GC 11) 

(E-butyltoluenes, 3-phenylpentane). It is of interest to note that only 

ortho and meta ring substituted products could be found in the product mix- 

ture, the corresponding para compounds being totally absent (GC). 
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Scheme 2: 

CH, CH,Et CB, 
Reduction z products + 

II 

Without C2H4 (conversion 38 %) 46 % 3 % 12 % 

With C2H4 (conversion 77 S) trace 5% 4% 

Ethylated 

+ 

1 % 22 % _- 1% -_ 

7% 16 % 13 % 31 % 8% 

The absence of para product follows logically from the known behaviour of sub- 

stituted benzenes in Birch-type reduction, wherein the first-formed intermedi- 

ates only permit addition at ortho and meta positions 12) . Several mechanisms 

for the reactions, including the observed rearomatization, can of course be 

written (e.g., involving various anions or radicals from both components), and 

it is assumed that several competing processes are involved. The relative 

yields of the various products obtained are strongly dependent of the reaction 

conditions employed (alkali metal, solvent composition, reaction temperature, 
13) protonation conditions, etc.) . The product distribution bears some re- 

semblance to that reported by Pines et al. 14) in the high temperature, high 

pressure reaction of aromatic compounds with alkenes in the presence of alkali 

metals and "promoters". 
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Other substrates investigated to date include bibenzyl (III), anthracene (IV), 

phenanthrene (V), 9,10-dihydrophenanthrene (VI), and fluorene (VII). In the 

case of III, the vast majority of the observed product mixture results as ex- 

petted 3,151 from initial cleavage of the benzylic -CH2-CH2- linkage, leading 

to toluene (17 %), propylbenzene (5 %) , and 3-phenylpentane (49 %). Smaller 

amounts (ca. IO %) of mono- and diethylated C,4 material could also be detect- 

ed16). 

V was found to be considerably more reactive in the present sense than VI, and 

IV was nearly inert. Both VI and VII produced, along with the expected reduced 

and/or ethylated products, significant amounts of hydro- and hydroethylated 

dimers whose structures are currently under investigation. Work in progress is 

designed to further elucidate the scope and mechanistic aspects of this virtu- 

ally unexplored low-temperature reaction 5) . 
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